کاربرد توابع lingo و to در ریاضیات

کاربرد توابع lingo و to در ریاضیات


برای آوردن یک فایل دسته ای LINGO ، به منظور انجام خودکار عملیات مورد استفاده قرار میگیرد. یک مثال از فایل Take در LINGO بصورت زیر میباشد:
MODEL:
! Design a box at minimum cost that meets area. Volume, marketing and aesthetic requirements:
[COST] min=2*(.05*(d*w+d*h)+I*w*h);
[SURFACE] 2*(h*d+r*w+d*w)>=888;
[VOLUME] h* d*w>=1512;
!These two enforce aesthetics:
[NOTNARRO] h/w=.518;
! Mardeting requires a small footprint:
[FOOTPRNT] d*w<=252;
@GIN (d);
@GIN (w);
@GIN (h);
END
! DIVERT The solution to BOXSOLN.TXT;
DIVE C:\MYDIR\BOXSOLN.TEX
!SOLVE the model;
GO
! Close the file BOXSOLN.TXT;
RVRT
در نتیجه‌ی استفاده از این فایل دسته ای، متغیرهای W,d,h مدلی که در حافظه قرار داشته باشد، عدد صحیح خواهد شد. سپس با راه حلی که در پنجره‌ی گزارش‌ها نمایش داده می‌شود و راه حل با عنوان فایل BOXSOLN.TXT ذخیره می شود.

Import LINGO File … F12
برای باز کردن فایلی است که شامل یک مدل LINDO (در قالب LINDO TAKE ) می‌باشد. قرار می‌گیرد و غیره. (با این همه، در صورت بروز خطا، پیغام خطای 97 یا 98 ظاهر خواهد شد).
مدل تغییر یافته، در یک پنجره‌ی جدید با همان عنوان فایل اصلی ظاهر می شود و سپس می‌تواند به عنوان یک فایل LINGO حل شود.
EXIT F10
برای خارج شدن از محیط LINGO استفاده می‌شود.

منوی EDIT
Undo Ctrl+Z
برای لغو آخرین کار انجام شده بکار می رود.
Cut Ctrl+x
برای پاک کردن متن انتخاب شده و انتقال آن به حافظه بکار می‌رود.
Copy Ctrl+C
برای کپی کردن متن انتخاب شده به حافظه بکار می‌رود.
ASTE Ctrl+V
برای چسباندن متن موجود در حافظه در مکان مشخص شده بکار می‌رود.
Clear Del
برای پاک کردن متن انتخاب شده (بدون قرار دادن آن در حافظه) بکار می‌رود.
FIND/REPLACE… Ctrl+F
برای جستجو در پنجره‌ی فعال در مورد متنی که در قسمت «Find What» نوشته می‌شود – بکار می رود. با کلیک کردن روی Find next در جعبه ارتباطی Find/Replace می‌توان نمونه‌ی دیگری را در متن جستجو نمود.
برای جایگزین کردن متنی که در قسمت «Replace» نوشته می‌شود، با کلیک کردن روی «Replace» عمل جایگزینی یکی‌یکی انجام می شود. با کلیک کردن روی «Replace All» جایگزینی به طور یکجا انجام می‌شود. فعال کردن «match Case» باعث می‌شود که بین حروف کوچک و بزرگ تفاوت قائل شود.
Go To LINE…Ctrl+T
برای دادن شماره خطی که شما مایلید به آن بروید کاربرد دارد. اگر عددی بزرگتر از شماره خط‌های موجود بدهید، به آخر خط خواهید رفت.
Match Parenthesis Ctrl+P
برای پیدا کردن پرانتزهای باز و بسته‌ی که با هم متناظرند، بکار می‌رود.

تعداد مشاهده: 173 مشاهده

فرمت فایل دانلودی:.zip

فرمت فایل اصلی: doc

تعداد صفحات: 62

حجم فایل:133 کیلوبایت

 قیمت: 8,000 تومان
پس از پرداخت، لینک دانلود فایل برای شما نشان داده می شود.   پرداخت و دریافت فایل
  • محتوای فایل دانلودی:


ریاضیات بابلی و مصری

ریاضیات بابلی و مصری


شرق باستان
ریاضیات اولیه برای توسعه خود نیازمند یک پایه عملی که چنین پایه ای با پیدا شدن اشکال پیشرفته تر بوجود آمد. در امتداد برخی از رودخانه های بزرگ آسیا و آفریقا مانند نیل در آفریقا و دجله و فرات و یانگ سه و گنگ در نواحی مختلف آسیا اشکال جدیدی بوجود آمد.
در امتداد برخی از رودخانه های بزرگ افریقا و آسیا یعنی نیل در افریقا دجله و فرات در آسیای غربی سند و پس از آان گنگ در آسیای جنوبی میانه و هوانگ هو و پس از آن یانگ تسه در آسیای شرقی بود که اشکال جدید که زمینهای واقع در امتداد این رودخانه ها به نواحی کشاورزی ثروتمندی تبدیل شوند.
با خشک کردن باتلاق و کنترل سیلاب و آبیاری این امکان وجود داشت که زمین هایی که در امتداد اینها قرار گرفته ا ند تبدیل به یک کشاورزی ثروتمند شوند.
ریاضیات اولیه در نواحی معینی از شرق باستان برای خدمت به کشاورزی و مهندسی بوجود آمده باشد یک تقویم قابل استفاده ایجاد دستگاههای اوزان و مقادیر برای استفاده در برداشت محصول ، انبارکردن و تقسیم غذا و غیره ... در تعیین قدمت اکتشافی دو مشکل وجود داشت:
1) در ماهیت ایستاپی ساخت اچتماعی و انزوای طولانی برخی از نواحی و 2) خبر موادی که کشفیات بر روی آنها ثبت می شد.
در قدیم بابلیان کشفیات خود را به روی سفالهای بادوام ثبت می کردند و مصریها بر روی سنگ و پاپیروس که از همه بادوام تر بود. در این میان هندی ها و چینی ها یافته های خود را روی خاشاک و برگ درختان ثبت می کردند که ازدوام بسیار پائینی برخوردار بود حال به مطالعه مطالب کشف شده در بابل و مصر می پردازیم.
بابل:
منابع
باستان شناسانی که در بین النهرین کار می کند از قبل از اواسط قرن نوزدمم تا کنون حدود نیم میلیون لوح سفالی منقوش از زیر خاک در آورده اند. بیشتر از 50 هزار لوح تنها در شهر باستانی نیپور به دست آمده.
مجموعه های کثیری از این لوح ها در موزه های پاریس ، برلین و لندن و نیز در دانشگاههای ییل کلمبیا و پلسیلوانیا موجودند. اندازه این لوحها متفاوت است و بین آنها لوحهایی به شکل مربع به مساحت چند اینچ و نیز لوحهایی به اندازه یک کتاب معمولی به چشم می خورد.
گاهی نوشته روی این لوح ها تنها در یک طرف لوح و یا در هر دو طرف آن است. از این نیم میلیون لوح 300 تای آنها صرفاً ریاضی شناسایی شده اند که شامل جداول و سیاهه های از مسائل ریاضی هستند ما دانش خود را از ریاضیات بابلی مدیون همین لوحها هستیم. تا پیش از سال 1800 قبل از میلاد کوشی برای کشف رمز خط میخی نمی شد در این سال عده ای مسافر اروپایی متوجه کتیبه های منقش در عمل 300 پایی در منطقه بیستون در شمال غربی لیوان کنونی کشف کردند.
معمای کتیبه های سرانجام توسط سرهنری کرسویک رالینسون (1895 – 1810) دیپلمات آشورشناس کشف شد که او کلیدی را که باستان شناس و زبان شناس آلمانی به نام جرج گئورگ فرید ریش ( 1853 – 1775) پیشنهاد کرده بود تکمیل کرد.
با بوجود آمدن توانایی لازم برای خواندن متون میخی لوحهای بابلی بدست آمده معلوم شد که این لوحها ظاهراً به کلیه مراحل و علایق زندگی آن اعصار مربوط است برخی از متون ریاضی موجود مربوط به دوره نهایی سومری در سال 21000 ق م است.
دومین گروه که گروه بزرگی هم است مربوط به سلسله بابلی اول ( یعنی دوره شاه حمورایی) تا حدود سال 1600 ق.م. می باشد .
سومین گروه مربوط به سالهای 6000 ق.م تا 300 ب.م می رسد. که مربوط به دورهای امپراتوری بابلی جدید ( بخت النصر) و دوره های بعدی پارسی و سکوی می باشد چون که تغییر این لوح هنوز در دست اقدام است پس بعید نیست به نتایج چشمگیرتری در آینده برسیم.
ریاضیات بازرگانی و ارضی :
حتی قدیمیترین لوحها نشانی از مهارت در محاسبه در سطح عالی داشته و وجود دستگاه موضعی شصتگانی را طی مدت زمانی طولانی آشکار می کند. متون متعددی از این دوره اولیه به واگذاری و محاسباتیکه بر پایه این معاملات می پردازد در دست است.
این لوحها نشان می دهند که سومریهای باستان با کلیه انواع قراردادها رسید ، سفته ضمانت و رهن مقابله سروکار داشته اند و نیز اسناد شرکتهای بازرگانی و لوحهایی که با دستگاه های اوزان و مقادیر سروکار دارند بدست آمده اند.
در این 300 لوح ریاضی که بدست آمده حدود 200 تای آنها جداول هستند. این لوحهای جدولی شامل جدولهای ضرب، عکسها، مربعات و مکعبات و حتی جدولهای توان نیز هستند. به نظر می رسد که تقویم در بابل به اعصار قدیمیترین مربوط می شود.
هندسه:
هندسه بابلی با پیوند نزدیکی با مسامی عملی دارد. بابلی های 2000 تا 1600 ق.م با قواعد کلی:
1) محاسبه مساحت مستطیل
2) مساحت مثلثهای قائم الزاویه و متساوی الساقین
3) ذوزنقه قائم الزاویه
4) حجم مکعب مستطیل و کلی تر از آن
5) حجم منشور قائمی که قاعده آن ذوزنقه خاصی است آشنا بوده اند آنها محیط دایره را به صورت سه برابر قطر و مساحت را یک دوازدهم در مجذور محیط بدست می آورده اند که با فرض ns3 درست است.
6) آنها حجم استوانه مستدیر قائم را پیدا کردن حاصلضرب قاعده در ارتفاع بدست می آورند.
7) اما حجم مخروط ناقص یا هر ناقص مربع القاعده را به غلط به صورت حاصلضرب ارتفاع در سقف مجموعه قاعده ها محاسبه می کردند. و اینکه می دانند که اضلاع متناظر در دو مثلث قائم الزاویه متشابه متناسبند و اینکه عمود مثلث متساوی الساقین قاعده را نصف می کند و همچنین محاط در یک نیم دایره قائمه است. قضیه فیثاغورث را هم بلد بودند و به جای در مسائل فرض می کردند.
مسائل متعددی راجع به خط قاطع موازی با یک ضلع مثلث قائم الزاویه وجود دارد که منجر به حل معادلات درجه دوم می شوند.
و نیز بعضی از مسائل منتهی به دستگاه معادلات می شود در یک لوح یک مورد دستگاه ده معادله ده مجهول به چشم می خورد. در یک لوح دیگر که مربوط به سال 1600 ق.م است و در دانشگاه بیل نگهداری می شود که معادله درجه سوم کلی در بحث هرمهای ناقص وجود دارد که نتیجه حذف Z از دستگاه معادلات از نوع زیر است.

تقسیم بر محیط دایره به 360 جز مساوی را بدون تولید به بابلیهای عهد باستان مدیونیم X در دوره های آغازین سومری واحد بزرگی برای اندازه گیری فاصله که توی میل بابلی وجود داشت که تقریباً معادل 7 مایل امروزی است.
و چون میل بابلی برای اندازه گیری فاصله های طولانی بود به صورت واحد زمان یعنی زمانی برای پیمودن یک میل بابلی لازم است در می آمده که بعدها برای اندازه گیری فواصل زمان مورد پذیرش قرار گرفت.

تعداد مشاهده: 390 مشاهده

فرمت فایل دانلودی:.docx

فرمت فایل اصلی: doc

تعداد صفحات: 14

حجم فایل:131 کیلوبایت

 قیمت: 3,000 تومان
پس از پرداخت، لینک دانلود فایل برای شما نشان داده می شود.   پرداخت و دریافت فایل
  • محتوای فایل دانلودی:


ریاضیات گسسته

ریاضیات گسسته


مقدمه:
تاریخچه ریاضیات گسسته
پیشرفتهای سریع تکنولوژی در نیمه دوم قرن یبستم به ویژه پیشرفتهای شگفت آور علوم کامپیوتر، مسائل جدید را مطرح کردندکه طرح و حل آنها روشها و نظریه های تازه ای می طلبد. طبیعت متناهی و گسسته بسیاری از این مسائل موجب شده است که روشها و قواعد گوناگون شمارش از اهمیت خاصی بر خوردار شوند. توفیق مفاهیم لازم برای بررسی این مسائل به کار گیری منطق ریاضی و نظریه مجموعه ها را اجتناب ناپذیر ساخته است.
معادلات تفاضلی، روابط بازگشتی، توابع مولد، از دیگراجزایی هستند ک در حل مسائل مورد بحث نقشی اساسی دارند از طرف دیگر هنگام بررسی مسائل مربوط به مدارها، شبکه های حمل و نقل، ارتبا طات بازاریابی و غیره نقش جایگزین ناپذری گرا فها قا طعانه آشکار می شود.
ریاضیات گسسته مقدماتی متنی فشرده برابر یک دوره ریاضیات گسسته در سطحی مقدماتی برای دانشجویان کارشناسی علوم کامپیوتر و ریاضیات است. مولفه های اساسی برنامه کار ریا ضیات گسسته در سطحی مقد ماتی عبارتند از : ترکیبات نظریه گرا فها همراه با کار بردهایی در چند مسئاله استاندارد بهینه سازی شبکه ها، الگوریتمهایی برای حل این مسائل مهم اتحادیه سازندگان ماشینهای محاسبه و مهم کمیته برنامه ریزی یرای کارشناسی ریا ضی بر نقش حیاتی یک دوره درسی روشهای گسسته در سطح کارشناسی که دانشجویان را به حیطه ریاضیات ترکیباتی و ساختارهای جبری و منطقی وارد کند و روی ارتباط متقابل علوم کامپیوتر و ریاضیات تأکید داشته باشد صحه گذاشته اند.

جایگاه و ضرورت آموزش ریاضیات گسسته در نظام جدید دبیرستانی
در جریان تغییر نظام آموزش دوره های کارشناسی ریاضی در سالهای اخیر در دانشگاهها و موسسات آموزش عالی شاهد بودیم که درسهای جدید به تنا سب گرایشهای این رشته جایگزین درسهایی از نظام قبلی شدند. درس ریا ضیات گسسته نیز به ارزش 4 واحد درسی در این راستا بعنوان یکی از واحدهای پایه همه گرایشهای دوره کارشناسی ریاضی در نظر گرفته شده است. در کتابهای درسی ریا ضی نظام جدید دبیرستان نیز شاهد گنجاندن مفاهیم پایه ای مربوط به مباحث مقدماتی ریاضیات گسسته مانند نظریه گراف و دنباله ها و آمار و احتمال و ... می باشیم.
همچنین در دوره پیش دانشگاهی نیز درسی جداگانه تحت عنوان ریاضیات گسسته در نظر گرفته شده است. از آنجا که این شاخه از ریاضی نیاز مند بحث و تبادل نظر از لحاظ آموزشی و تعیین جایگاه و ارتباط آن با سایر شاخه ها و موضوعات ریاضی می باشد.
مطالبی که در این قسمت از بحث طرح خواهد شد بیشتر بر اساس مقاله ای است که تحت عنوان »آموزش ریاضی گسسته در دوره دبیرستان« توسط پروفسور آ.کاتلین
در مجلة بین المللی ریاضیات، علم و تکنولوژی 1990 درج شده است.
» انقلاب کامپیوتری، ریاضیات گسسته را همانند حساب دیفرانسیل و انتگرال برای علم و تکنولوژی ضروری ساخته است.«

محتوای کلی ریاضیات گسسته
محتوای دقیق یک دوره ریاضیات گسسته هنوز تا حدودی به طور مبهم باقیمانده است، زیرا هم کتابهایی که تاکنون در این زمینه به رشته تحریر در آمده و هم برنامه های درسی که در این مورد از سوی برنامه ریزان مباحث درسی ریاضی تهیه وتنظیم می شود، دقیقاَ نتوانسته اند موضوعات و قلمرو مباحث این درس را مشخص نمایند. موضوعاتی از قبیل نظریه اعداد و آمار و احتمالات و جبر خطی آنالیز عددی و مباحسات و برنامه سازیهای کامپیوتری ضمن اینکه در ریاضیات پیوسته جای پای محکمی دارند، در ریاضیات گسسته نیز خودنمایی و شکوفای روز افزون دارند. با این حال می توان گفت که ریاضیات گسسته شامل مباحثی است که مراحل مربوط به تغییرات گسسته و کمیتهای گسسته را توصیف می کند، در مقابل کالکوس که مراحل تغییرات به طور پیوسته را دنبال می کند پس به طور دقیق می توان گفت که ریاضیات گسسته کالکوس( حسابان) نیست.
به طور کلی یک دوره ریاضیات گسسته را می توان شامل عناوین زیر دانست:
منطق راضی و نظریه مجموعه ها ، ساختار های جبری از قبیل مباحث مربوط به گروهها و حلقه ها و میدانها و کواتریونها، شببکه ها جبر یون، نظریه گراف، روشهای ترکیبات و شمارش، نظریه اعداد محاسبات و الگوریتمهای عددی و تجزیه و تحلیل آنها، استقرار و روابط بازگشتی معادلات تفاضلی،آمار و احتمال با فضاهای نمونه ای گسسته.

تفاوت ریاضیات گسسته و حساب دیفرانسیل و انتگرال ( ریاضیات پیوسته)
در اساسی ترین سطح، مدلی برای بیان تفاوت بین ریاضیات گسسته و ریاضیات پیوسته ( یعنی حساب دیفرانسیل و انتگرال و شاخه هایی از آنا لیز که به حساب دیفرانسیل و انتگرال وابسته اند) تفاوت بین اعداد صحیح و اعداد حقیقی است. اعداد حقیقی، پایه همه ریا ضیاتی هستند که مانند حساب دیفرانسیل و انتگرال با خواص توابع پیوسته سر و کار دارند. در حالیکه ریاضیات گسسته بیشتر با توابعی سر و کار دارند که بر مجموعه نقاط گسسته تعریف شده اند( مثل دنباله ها) واز بسیاری جنبه ها به طور کامل با ساختمان پرشکوه آنالیز که بر پایه حساب دیفرانسیل بنا شده است و به طور عمده به توابع پیوسته می پردازد، تفاوت دارد. می دانیم که سیستم های فیزیکی از تعداد زیادی ذرات گسسته – اتمها و مولکولها – تشکیل شده است، در عمل پیوسته فرض کردن ماده فرض بسیار مناسب و دقیقی است. این سبب می شوند که اکثر پدیده ها ی طبیعی سیستمهای فیزیکی که از طریق حساب دیفرانسیل و انتگرال مدل سازی می شوند نوعاَ به صورت معادلات دیفرانسیل درآیند. این عملکرد آنچنان موفقیت شگفت انگیزی داشته است ک نتایج حاصل از آن تقریباَبرای همه مقاصد و اهداف ذاتاَ دقیق اند و موفقیت مهندسی وصنعت در قرنهای اخیر در سراسز دنیا مرهون این مدل سازی زیبا و دقیق و کار بردی ریاضی است، خصوصاَ از زمانی که پیدایش حسابگرهای رقمی و سپس کامپیوترها امکان بررسی و حل عددی معادلات دیفرانسیل و دیگر معادلات را فراهم نمودند. این آغاز شکوفایی آنالیز عددی بود نمونه متعارف از مسائلی که با استفاده از تکنیکهای آنالیز عددی حل می شوند این است که فرمول بندی یک مساله فیزیکی را با استفاده از حساب دیفرانسیل و انتگرال در نظر بگیریم و سپس آن را به شکل گسسته تبدیل کنیم تا با روشهای عددی قابل حل باشد. چنانچه در نمودار سیکلی مدل سازی ریاضی برای مسائل فیزیکی بیان گردید مرحله نهائی این پروژه زمانی قابل استفاده برای مسائل فیزیکی خواهد بود که جواب یا پیش بینی حاصلها از الگوی ریاضی ارزش عملی دانسته باشد و این امر جز به وسیله آنالیز عددی و محاسبات عددی مربوط به آن و تجزیه تحلیل خطاهای وارده و استفادهاز اصل دقت متغیر در روشهای ریاضی امکان پذری ننخواهد بود. از طزفی نیاز به ریاضیات گسسته، محدود به آنالیز عددی میشد نمی توانستیم ادعا کنیم که چنین ریاضیاتی نقش مقایسه کردنی با حساب دیفرانسیل و انتگرال دارد. آنالیز عددی با وجود کار بردهای وسیع، آن موضوعی تخصصی است نمی تواند تأثیر چشمکیری بر روند دآموزشی ریاضیات بگذارد هر چند آنالیز عددی مهمترین محل تلاقی ریاضیات پیوسته گسسته است امروزه تنها یک جزء کوچک از کار بردهای ریاضیات گسسته را در‌بر‌می‌گیرد.

فهرست مطالب
- مقدمه
- جایگاه و ضرورت آموزش ریاضیات گسسته در نظام جدید دبیرستان 2

- محتوای کلی ریا ضیات گسسته 3

- تفاوت ریاضیات گسسته و حساب دیفرانسیل و ا نتگرال 4

- مرور تاریخی مباحث مهم ریاضیات گسسته 8

- مفهوم جاگشت 8

- اولین فن حدس زدن 8

- دیریکله 9

- تاریخچه اصل شمول و عدم شمول 9

- نظریه گراف 10

- مسئله پل کونیگسبرگ 10

- طریقه نمایش گراف 11

- گراف هامیلتونی 12

- رابطه های بازگشتی و مبادلات تفاضلی 19

- نمودار ترسیمی روشها و مدلهای گسسته و پیوسته ریاضی 25

- منابع 28

تعداد مشاهده: 242 مشاهده

فرمت فایل دانلودی:.doc

فرمت فایل اصلی: doc

تعداد صفحات: 29

حجم فایل:313 کیلوبایت

 قیمت: 5,000 تومان
پس از پرداخت، لینک دانلود فایل برای شما نشان داده می شود.   پرداخت و دریافت فایل
  • محتوای فایل دانلودی:


آشنایی با ریاضیات

آشنایی با ریاضیات


مقدمه: آشنایی با ساختمان منطقی جمله هایی که مطالب ریاضی بوسیله آنها بیان می شوند مستلزم مفاهیم گزاره، گزاره نما، و اسم نماست. این مفاهیم که بخشی از منطق ریاضی مقدماتی محسوب می شوند می توانند مفاهیم و احکام ریاضی را قابل فهم و قابل توضیح نمایند. در عصر حاضر ایفای نقش منطق ریاضی در توجیه و قابل انتقال نمودن مفاهیم در پیشرفت و تکامل کامپیوتر بر هیچکس پوشیده نیست.
2.1 حساب گزاره ها
1.2.1 تعریف: گزاره جمله ای خبری است که یا راست است یا دروغ اگرچه راست یا دروغ بودن آن معلوم نباشد.
برای هر گزاره یک ارزش راستی یا دروغی یا مختصراً یک ارزش قائل می شویم. مثلاً هر یک از جملات«عدد 3 فرد است»،«عدد 6 زوج است» و« اصم است» گزاره هستند. هر یک از گزاره های اول و دوم راست هستند ولی راست یا دروغ بودن گزاره سوم یا مقدمات کنونی، برایمان معلوم نیست ولی در هر حال یا راست است یا دروغ.گزاره ها بطورکلی به سه دسته تقسیم می شوند: گزاره شخصی، گزاره کلی و گزاره جزئی( یا وجودی) نوع اول گزاره ای است که از شیء معینی خبر می دهد. و در این بخش مورد بحث ماست. نوع دوم و سوم را در بخش آینده تعریف و بررسی خواهیم کرد.
از ترکیب گزاره ها گزاره های مرکب حاصل می شود این عمل با رابطهای گزاره ای امکان پذیر است.
2.2.1 رابطهای گزاره ای: گزارها را با حروف p ، q ،v ،s و یا با حرف اندیس دار نظیر ، ،... نشان می دهیم و هر نوع ترکیبی از آنها با الفاظ زیر که رابطهای گزاره ای نامیده می شوند امکان پذیر است.
«چنین نیست که»،«و»،«یا»،« اگر»،« اگر و فقط اگر»
علایم ~ ، &، ، ( یا )، ( یا ) نیز به ترتیب برای این رابط ها بکار خواهند رفت. اینک به توضیح آنها می پردازیم:
3.2.1 نقیض: اگر Pگزاره ای باشد«چنین نیست کهP» را نقیض P می گوییم و با علامت ~P نشان میدهیم. علامت ~ را ناقص و گزاره ای را که ناقص در آن عمل می کند دامنة عمل ناقص می نامیم. پیداست که اگر گزاره ای راست(دروغ) باشد نقیض آن دورغ( راست) است.
بعنوان مثال نقیض گزاره«6 عدد اول است» گزارة«چنین نیست که 6عدد اول است.» و گزاره«6 عدد اول نیست» خواهد بود.
4.2.1 ترکیب عطفی: اگر pو q دو گزاره باشد گزاره«p,q » را ترکیب عطفی p با q می گوییم و با علامت نشان میدهیم. علامت& را عاطف و p وq را مؤلفه های
عاطف نامیم. ترکیب عطفی فقط و فقط وقتی راست است که هر دو مؤلفه آن گزاره های راستی باشند.
از الفاظی که از نظر منطقی مترادف عاطف است لفظ« ولی= اما» است مثلاً گزاره«6 زوج است ولی اول نیست» به معنی« 6 زوج است و 6اول نیست» خواهد بود که البته گزاره ای راست است.
5.2.1 ترکیب فصلی: اگرp وq دو گزاره باشند گزارة«p یاq » را ترکیب فصلی p با q نامیده به علامت p v q نشان میدهیم. این گزاره فقط و فقط وقتی دروغ است که هردو مؤلفه آن دروغ باشند. توجه کافی به تفاوت این« یا» که یاء منطقی نامیده می شود با لفظ عادی« یا» که در استعمال عادی برای ترکیب گزاره ها بکار میرود مبذول دارید. در استعمال عادی لفظ«یا» گزارة ترکیب شده فقط وفقط وقتی راست است که یکی از مؤلفه ها راست و دیگری دروغ باشد این نوع«یا» را یاء مانع جمع می نامیم.
در منطق لفظ«یا» همواره به معنی منطقی بکار می رود و «یای» مانع جمع را با تکرار لفظ«یا» و نیز با لفظ« الا» مشخص می کنند. مثلاً گزاره های
« یا 5 فرد یا 5ز وج است»
« 5 فرد است والا زوج است»
به یک معنی هستند که مشخص کننده یای مانع جمع است.
6.2.1 ترکیب شرطی: اگر p و q دو گزاره باشند گزارة« اگر p آنگاه q » را ترکیب شرطی p باq می نامیم و آنرا به علامت ( یا ) نشان می دهیم.
در اینجا مؤلفه p مقدم و مؤلفه q تالی گفته می شود . ترکیب شرطی فقط وقتی دروغ است که pگزارة راست و q گزارة دروغ می باشد.
تذکر1: ارزشهای گزارة عطفی و گزاره از ترتیب مؤلفه ها مستقل است ولی ارزش گزارة شرطی چنین نیست، یعنی ممکن است راست ولی دروغ باشد و یا بالعکس دروغ و راست باشد
تذکر 2: بیان ترکیب شرطی« اگر p آنگاه q » در ریاضیات و نیز در زبان عادی به صورت های متنوعی امکان پذیر است که عبارتند از:
اگر p ، q ؛
هرگاه p آنگاه q ؛
در حالتی که p ، q ؛
q اگر p ،
q به شرطی p ؛
P و فقط وقتی که q ؛
P شرط کافی برای q است؛
q شرط لازم برای p است ؛
شرط کافی برای q آن است که p ؛
شرط لازم برای p آن است که q ؛
P مستلزم q است؛
q از p لازم می آید؛
.
7.2.1 ترکیب دو شرطی : گزارة
« اگر p آنگاه q و اگر q آنگاه p » (1)
ترکیب عطفی دو گزارة شرطی و است که می توان آن را به صورت زیر
نوشت:

تعداد مشاهده: 455 مشاهده

فرمت فایل دانلودی:.doc

فرمت فایل اصلی: doc

تعداد صفحات: 23

حجم فایل:483 کیلوبایت

 قیمت: 4,500 تومان
پس از پرداخت، لینک دانلود فایل برای شما نشان داده می شود.   پرداخت و دریافت فایل
  • محتوای فایل دانلودی: