تحلیل سیستمی - پیچیدگی

تحلیل سیستمی - پیچیدگی


مقدمه
یکی از وجوه اساسی علم که آن را از هنر و ادبیات متمایز می کند امکان بیان آن به کمک اعداد و کمی کردن آن با استفاده از روابط ریاضی است.این پدیده چنان فراگیر شده است که بسیاری از اوقات کار علمی براساس کیفیت ریاضیات آن سنجیده می‌شود و نه محتوای تجربهاش. بهکارگیری روابط ریاضی، علاوه بر ایجاد شرایط جدید برای نگرش به پدیدهها (نوآوری)، نوعی سیستم ارزشی برای اندازه گیری و کمی کردن نیز بهوجود می آورد.
نظریة پیچیدگی مطمئناً راه جدیدی برای نگاه کردن به پدیدههاست و به تدریج در حال تغییر دادن تکنیکهای ریاضی سنتی است. به همین دلیل نیز برخی از دانشمندان نظریة پیچیدگی را گنگ و مبهم میدانند و آن را شایستة عنوان علم نمی‌شناسند. نیاز به تکنیکهای جدید ریاضی جهت مواجهه با علوم جدید، موضوع تازه‌ای نیست (ریاضیات نیوتونی و لایبنیتز، توپولوژی پوآنکاره، هندسة غیر اقلیدسی ریمان، آمار بولتزمن و نظریة مجموعههای کانتور). تمام این دیدگاههای جدید در ریاضیات به دلیل نیاز به کمی کردن نظریه‌های جدید علمی که در آن زمان پا به عرصه وجود گذاشته بودند ابداع شدند.
بهتر است در اینجا نگاهی به اجزای اصلی یک سیستم پیچیده بیندازیم. به طور کلی هر سیستم پیچیده یک سیستم کاملاً عملکردی است که شامل اجزای متغیر و وابسته به هم است. به بیان دیگر، برخلاف یک سیستم کاملاً سنتی (نظیر هواپیما) اجزا دارای ارتباطات دقیقاًٌ تعریف شده و رفتارهای ثابت یا مقادیر ثابت نیستند و عملکردهای انفرادی آنها نیز ممکن است با روشهای سنتی قابل تبیین نباشد. به رغم این ابهام، این سیستمها بخش اعظم جهان ما را تشکیل می‌دهند و ارگانیسمهای زنده و سیستمهای اجتماعی و حتی بسیاری از سیستمهای غیر ارگانیک طبیعی نیز در زمرة آنها قرار می‌گیرند.
پیچیدگی ایستا (نوع اول). براساس نظریة پیچیدگی اجزایی که دارای برهم کنشهای بحرانی هستند خود را به گونه‌ای سازمان دهی می‌کنند که به سوی ساختارهای تکاملی پیش روند و سلسله مراتبی از خصوصیات سیستمهای غالب را ایجاد کنند. در این نظریه سیستمها را باید به صورت یک کل نگریست و برخلاف دیدگاههای سنتی، از تجزیه و ساده سازی آنها پرهیز کرد. به دلیل وجود عوامل غیر خطی در سیستمهای به شدت وابسته به هم، دیدگاههای سنتی قادر به تجزیه و تحلیل نیستند. در اینجا علتها و معلولها قابل تفکیک از هم نیستند و مجموع اجزا برابر با کل نخواهد شد. رویکرد مورد استفاده در نظریة پیچیدگی بر مبنای تکنیکهای جدید ریاضی قرار دارد که سر منشأ آنها را باید در شاخه های مختلف چون فیزیک، زیست شناسی، هوش مصنوعی، سیاست و ارتباطات راه دور جستجو کرد. ساده‌ترین شکل پیچیدگی که معمولاً توسط ریاضی دانان و دانشمندان مورد مطالعه قرار می گیرد، در ارتباط با سیستمهای ثابت است. در اینجا فرض می کنیم که ساختار مورد نظر در طول زمان تغییر نمی کند. به بیان دیگر، به اصطلاح دانشمندان سیستم، با یک تصویر ثابت از سیستم سرو کار داریم. به عنوان مثال، می توان به یک ریز تراشة کامپیوتر نگاه کرد و آن را پیچیده یافت. می‌توان آن را با یک مدار الکترونیک مرتبط دانست و برای تعیین پیچیدگی نسبی آن، آن را با سیستمهای جانشین مقایسه کرد (مثلاً از نظر تعداد ترانزیستورها). می‌توان همین کار را با اشکال زندة حیات نیز انجام داد و آنها را بر حسب تعداد سلولها، تعداد ژنها و غیره اندازه گیری کرد. تمامی این جنبه های کمی، فاقد مهمترین مسئلة تفکر در پیچیدگی هستند و آن این است که آیا واقعاًٌ پیچیدگی به تعداد اجزا بستگی دارد و چرا پیچیدگی سیستمی مثلاً با 100 جزء متفاوت با سیستم دیگر با همین تعداد اجزاست.
برای نگرشی دقیقتر به این سئوال، نیازمندیم به دنبال الگوها و آمارهای کمیتها باشیم. روشن است که پیچیدگی ترتیبی از 50 توپ سفید و 50 توپ سیاه، از پیچیدگی 5 توپ سیاه، 17 توپ سفید، 3 توپ سیاه، 33 توپ سفید و 42 توپ سیاه کمتر است. با این حال معنای چنین ترتیبی نامشخص است. آیا ترتیب تصادفی است یا معنادار؟ هنگامی که چنین تحلیلهایی به سه بعد تعمیم داده می‌شوند و بیش از یک مشخصه برای هر جز تعریف می‌شود (اندازه، چگالی، شکل) پیچیدگیهای احتمالی به نحوه غیر قابل تصوری افزایش می یابند و توانایی ریاضیات موسوم را به چالش فرا میخوانند. در اینجا صرفاً یک سطح مورد نظر قرار داشت ولی در طبیعت سطوح مختلفی از ساختار در تمام سیستمها وجود دارند و این سطوح باعث افزایش پیچیدگی خواهند شد (پیچیدگی یک مولکول، به علاوة سلول، به علاوة ارگانیسم، به علاوة اکوسیستم، به علاوة سیارة زمین و ...). این پدیده باعث می‌شود تا ریاضیات پیچیدگی ایستا نیز دشوار باشد.
پیچیدگی پویا (نوع دوم). با افزایش بعد چهارم، یعنی زمان، موقعیت بسیار بغرنجتر خواهد شد. از زاویة دید مثبت، شاید تشخیص الگوها با تغییراتشان در زمان ساده تر از حالت سکون آنها باشد (فصول، ضربان). اما از سوی دیگر ممکن است با اجازه دادن به اجزا برای تغییر با زمان، الگوهای حالت سکونی را که قبلاً شناسایی کرده بودیم و طبقه بندیهای انجام گرفته بر پایة آنها از دست بروند (برگها سبز هستند، به جز در پاییز که زرد می‌شوند و در زمستان که اصلاً وجود ندارند!).
تشخیص عملکرد، یکی از راههای اصلی تحلیل علمی است. پرسش «سیستم چه کاری انجام می‌دهد؟» و به دنبال آن «چگونه این کار را انجام می‌دهد؟» هر دو دارای مفهوم حرکت در زمان هستند. با توجه به ضعف ما در بررسی تجربیات تکرارپذیر، مهم خواهد بود که تشخیص دهیم آیا پدیدة مورد مطالعه ایستاست یا آنکه دارای تغییرات دوره‌ای است. علم همواره با آزمایش و تأیید آزمایشها سروکار دارد و پیشنیاز این امر، داشتن نمونه‌های متعدد است. روابط ریاضی مورد استفاده به گونه‌ای هستند که برای داده‌های یکسان، همواره پاسخهای یکسانی را ارائه می کنند و این یک نکتة اساسی در نظریة پیچیدگی است. ما در بسیاری از اوقات ناچار می‌شویم تا به طور مصنوعی پیچیدگی پدیدة مورد بررسی را کاهش دهیم تا در چارچوب محدودیت فوق قرار گیریم. یک فرد دارای وجوه گوناگونی است ولی، او را با آن دسته از مشخصه‌هایش تعریف می کنیم که در طول زمان بدون تغییر باقی می‌مانند (و یا قابل پیش بینی هستند) نظیر نام، رنگ پوست، ملّیت یا سن، شغل، قد و مانند آنها. نظریة پیچیدگی نیازمند آن است که سیستم را به صورت یک کل مورد بررسی قرار و از آن تعریفی به دست دهیم که تمامی جنبه‌های آن را پوشش دهد و در این نقطه است که روشهای سنتی و ریاضی پاسخگو نخواهند بود.
پیچیدگی تکاملی (نوع سوم). یکی از پدیده‌های مهم در اطراف ما پدیده‌های ارگانیک هستند. بهترین مثالهای مربوط به این پدیده‌ها، مربوط به نظریة نوین داروین در انتخاب طبیعی است که طی آن سیستمها در طول زمان تکامل پیدا می‌کنند و سیستمهای دیگری ابداع می‌شوند (مثلاً یک موجود دریایی تبدیل به یک موجود خشکی می‌شود). این شکل از تغییر که ظاهراً منتهایی نیز برای آن قابل تصور نیست، بسیار بغرنجتر از آن است که پیش از این انگاشته می‌شد. می‌توان همین مفهوم تغییرات غیردوره‌ای را با مواردی چون سیستمهای ایمنی بدن، آموزش، هنر و کهکشانها نیز توسعه داد. طبقه بندی پیچیدگی، عملاً به معنای برداشتن قدم دیگری، به سوی تاریکی خواهد بود چرا که اگر امکان شمارش مصداقهای آن وجود نداشته باشد چگونه می‌توان نام علم را بر آن نهاد؟
پاسخ این سئوال به مبحث الگو باز می‌گردد. در هر سیستم پیچیده، ترکیبات بسیار زیادی از اجزا می‌توانند وجود داشته باشند و در حقیقت می‌توان مشاهده کرد که بسیاری از این ترکیبات پیش از این هرگز در طول حیات جهان وقوع پیدا نکرده‌اند. با بررسی تعداد زیادی از سیستمهای متفاوت، می‌توان شباهتها (الگوها) را در آنها تشخیص داد و طبقه بندی هایی را برای تعریف آنها ایجاد کرد. این تکنیکها، که می توان آنها را آماری دانست، بسیار مناسب اند و راهنمایی‌هایی کلی ارائه می‌کنند، ولی فاقد یک نیازمندی اساسی در کار علمی هستند و آن قابلیت پیش‌بینی است. در به کارگیری علم (فناوری) ما نیازمند آن هستیم که سیستم را به گونه‌ای طراحی و ایجاد کنیم که وظایف خاصی را به انجام برساند واین یعنی خواسته‌ای که به نظر نمی‌آید از دیدگاه تکاملی قابل بررسی و تعمیم باشد.
پیچیدگی خود سازمان دهی (نوع چهارم). آخرین شکل سیستم پیچیده، شکلی است که مهمترین و جدیدترین نوع در نظریة پیچیدگی محسوب می‌شود. در اینجا محدودیتهای داخلی سیستمهای بسته (نظیر ماشینها) با تکامل خلاقانة سیستمهای باز (نظیر مردم) با همدیگر تلفیق می‌شوند. در این دیدگاه سیستم با محیط خود تکامل می یابد به گونه‌ای که پس از مدتی، دیگر سیستم در طبقه بندی قبلی خود نمی‌گنجد. در اینجا می‌بایستی عملکردها و وظایف سیستم به گونه‌ای تعریف شوند که چگونگی ارتباط آنها با جهان وسیع خارج از سیستم مشخص شود. از انواع قبلی سیستمهای گسسته و سیستمهای خود نگهدارنده، به نظر می‌آید که به مفهومی از پیچیدگی رسیده‌ایم که نمی‌توان آن را از دیگاه کیفی یک سیستم جدا دانست.
عملاً سیستمهای خود تکاملی نظیر بوم‌شناسی و زبان سعی دارند عملکردهای خود را کاملاً با تطابق با محیط شکل دهند و عملاً از این دیدگاه می‌توان روش شناسی‌ای را تدوین کرد که طی آن فرایند طراحی از درون سیستم به برون آن سوق داده شود. ما می‌توانیم به جای طراحی خود سیستم، محیط آ ن را طراحی کنیم (محدودیتها) واجازه دهیم تا سیستم خود به گونه‌ای تکامل یابد تا پاسخ صحیح را بیابد، نه آنکه پاسخی از طرف ما به سیستم تحمیل شود. این دیدگاه در فناوری ارگانیک، دیدگاهی جدید و نتایج آن در حال حاضر در مهندسی ژنتیک و طراحی مدارها در حال بررسی است.
از دیدگاه نظریة پیچیدگی، بسیار مایل هستیم پیش‌بینی کنیم کدام حل غالب از بین شقها و محدودیتهای گوناگون رخ خواهد داد.

تعداد مشاهده: 224 مشاهده

فرمت فایل دانلودی:.doc

فرمت فایل اصلی: doc

تعداد صفحات: 20

حجم فایل:86 کیلوبایت

 قیمت: 4,000 تومان
پس از پرداخت، لینک دانلود فایل برای شما نشان داده می شود.   پرداخت و دریافت فایل
  • محتوای فایل دانلودی:


مطالعه عددی انتقال حرارت در مبدلهای حرارتی صفحه لوله و تحلیل آن بوسیله اصل هم پوشانی میدان

مطالعه عددی انتقال حرارت در مبدلهای حرارتی صفحه لوله و تحلیل آن بوسیله اصل هم پوشانی میدان


در این مقاله جریان سیال و انتقال حرارت در مبدل حرارتی
صفحه لوله، به طور عددی مطالعه شده است. عدد رینولدز در این
مطالعه بین 900 تا 2000 متغیر است و از مدل اغتشاش
برای مدل کردن اغتشاش استفاده شده است. k -e RNG
نتایج بدست آمده در قالب ضریب انتقال حرارت، افت فشار، ضریب
کلبورن و ضریب اصطکاک ارائه شده است. همچنین انتقال حرارت در
سطوح گسترش یافته به اصل قانون هم پوشانی میدان انرژی تحلیل
شده است. این اصل به خوبی دلایل تغییرات موضعی در انتقال
حرارت را توضیح میدهد.

تعداد مشاهده: 339 مشاهده

فرمت فایل دانلودی:.pdf

حجم فایل:135 کیلوبایت

 قیمت: 2,500 تومان
پس از پرداخت، لینک دانلود فایل برای شما نشان داده می شود.   پرداخت و دریافت فایل
  • محتوای فایل دانلودی:


تجزیه و تحلیل هزینه – حجم - سود

تجزیه و تحلیل هزینه – حجم - سود


تجزیه و تحلیل هزینه – حجم – سود (CVP) روش تجزیه و تحلیل نحوه تصمیم گیری عملیاتی و
بازاریابی موثر بر سود خالص بر مبنای شناسایی ارتباط بین هزینه های متغییر و ثابت،قیمت
فروش واحد محصول و سطح تولید است.
موارد استفاده از CVP:
تعیین قیمت فروش برای محصولات و خدمات
عرضه یک محصول یا خدمت جدید به بازار
جایگزینی یک قطعه از تجهیزات
تصمیم گیری درباره ساخت یا خرید یک محصول یا خدمت

تعداد مشاهده: 597 مشاهده

فرمت فایل دانلودی:.ppt

تعداد صفحات: 34

حجم فایل:5,688 کیلوبایت

 قیمت: 35,000 تومان
پس از پرداخت، لینک دانلود فایل برای شما نشان داده می شود.   پرداخت و دریافت فایل
  • راهنمای استفاده:
    پاورپوینت

  • محتوای فایل دانلودی:
    پاورپوینت

فیلم آموزشی تحلیل المان محدود یک لوله تحت فشار داخلی در نرم افزار آباکوس

فیلم آموزشی تحلیل المان محدود یک لوله تحت فشار داخلی در نرم افزار آباکوس


لوله موردمطالعه از دو طرف به دو مخزن وصل شده است. برای انجام آنالیز فقط بخشی از لوله به طول یک متر مدل می‌شود. لوله تحت فشار داخلی 2 MPa قرار دارد. شعاع لوله بربر با 30 cm و ضخامت آن 3 mm است. جنس لوله نیز از فولاد در نظر گرفته شده است.

تعداد مشاهده: 266 مشاهده

فرمت فایل دانلودی:.rar

فرمت فایل اصلی: avi

حجم فایل:8,870 کیلوبایت

 قیمت: 5,000 تومان
پس از پرداخت، لینک دانلود فایل برای شما نشان داده می شود.   پرداخت و دریافت فایل
  • محتوای فایل دانلودی:


تحلیل داده ها

تحلیل داده ها



1- ارقام با معنی:
برای تعیین رقمهای با معنا ، رقمها را از سمت چپ به راست می شماریم. صفرهایی ک قبل از اولین رقم سمت چپ نوشته می شوندجزء رقمهای با معنا به حساب نمی آیند این صفرها به هنگام تبدیل یکاها ظاهر می شوند و تبدیل یکاها نباید تعداد رقمهای با معنا را تغییر دهد
12/6 : سه رقم بامعنی
0010306/0 :پنج رقم با معنی که اولین رقم با معنی یک است.صفرهای قبل از یک با معنی نیستند
20/1 : سه رقم با معنی در صورتیکه صفر با معنی نباشد عدد باید به صورت2/1 نوشته شود
38500 : سه رقم با معنی، چیزی برای اینکه نشان دهد صفرها با معنی هستند یا نه مشخص نیست می توان این ابهام را با نوشتن بصورتهای زیر برطرف کرد:
: هیچکدام از صفرها با معنی نیستند
: یکی از صفرها با معنی است
:هر دو صفر با معنی است
m 040/0 = Cm0 /4=mm40 که هر سه دارای سه رقم با معنی هستند.
2- گرد کردن اعداد:
اگر بخواهیم ارقام عدد 3563342/2 را به دو رقم کاهش دهیم، این عمل را گرد کردن عدد می نامند. برای این منظور باید به رقم سوم توجه کنیم بدین صورت که اگر قم سوم بزرگتر یا مساوی5 باشد رقم دوم به طرف بالا گرد می شود و اگر رقم سوم کوچکتر از 5 باشد رقم دوم به حال خود گذاشته می شود
4/1 3563342/2
62700 62654
108/0 10759/0
3- محاسبات و ارقام با معنی:
می خواهیم سطح مقطع یک استوانه به قطر6/7 را بدست آوریم:

اشکال کار: اگر دقت کنیم محاسبات تا 10 رقم با معنی است اگر از کامپیوتری تا 100 رقم استفاده می کردیم چه؟ در صورتیکه قطر کره تا دو رقم با معنی است بنابراین در اینگونه موارد به نکات زیر توجه می کنیم:
توجه: اگر مجبورید محاسبه ای را که در آن خطای مقادیر مشخص نیست انجام دهید و می بایستی فقط با ارقام با معنی کار کنید به نکات زیر توجه کنید:
الف ) زمانی که اعداد را در هم ضرب و یا بر هم تقسیم می کنید: عددی که با کمترین ارقام با معنی در محاسبه است را شناسایی کنید به حاصل محاسبه همین تعداد ارقام با معنی نسبت دهید
چون 7/3 با دو رقم با معنی است           
                                                                             
                                                           
ب ) زمانی که اعداد را با هم جمع و یا از هم کم می کنید: تعداد ارقام اعشاری عدد حاصل از محاسبه را برابر تعداد کمترین ارقام اعشاری اعداد شرکت داده شده در محاسبه گرد کنید
کمترین اعشار مربوط به1/13 است               
                                                                  
                                                          
مثال: شعاع یک کره5/13 سانتیمتر برآورد شده است. حجم ایمن کره را بدست آورید؟
جواب:
مثال: چگالی کرهای به جرم44/0 گرم و قطر76/4 میلی متر را بدست آورید؟

4- متغیرهای وابسته و مستقل:
به کمیتی که مقدار آن را می توانیم تنظیم نمائیم و یا در طول آزمایش به دلخواه تغییر داده می شود، متغیر مستقل گفته می شود و آنرا به عنوان مختصهx در نمودار می گیریم.
به کمیتی که بر اثر تغییر در متغیر مستقل پیدا می کند، متغیر وابسته گفته می شود و به عنوان مختصهy در نمودار گرفته می شود.
مثلا در آزمایش انبساط طولی میله در اثر حرارت دما متغیر مستقل و طول میله متغیر وابسته می باشد 

5- خطا :
تمام اندازه گیریها متاثر از خطای آزمایش هستند.منطور این است که اگر مجبور با انجام اندازه گیریهای پیایی یک کمیت بخوصوص باشیم، به احتمال زیاد به تغییراتی در مقادیر مشاهده شده برخورد خواهیم کرد. گرچه امکان دارد بتوانیم مقدار خطا را با بهبود روش آزمایش و یا بکارگیری روشهای آماری کاهش دهیم ولی هرگز نمی توانیم آن را حذف کنیم.
1-5- خطای دقت وسایل اندازه گیری :
هیچ وسیله اندازه گیری وجود ندارد که بتواند کمیتی را با دقت بینهایت اندازه گیری نماید.بنابراین نادیده گرفتن خطای وسایل اندازه گیری در آزمایش اجتناب ناپذیر است.
اگر اندازه کمیتی که اندازه می گیریم با گذر زمان تغییر نکند، مقدار خطا را نصف کوچکترین درجه بندی آن وسیله در نظر می گیریم.
مثال:
متر کوچکترین درجه mm1 = مقدار خطا
پس اندازه گیریی mm54 را بصورت بیان می کنیم
دما سنج کوچکترین درجه ºC2 = مقدار خطا
پس اندازه گیریی ºC60 را بصورت بیان می کنیم
2-5- خطای خواندن مقدار اندازه گیری:
3-5- خطای درجه بندی وسایل اندازه گیری:
تعریف خطای مطلق: اگر خطا را با همان یکای کمیت اندازه گیری شده بیان نمائیم، به این خطا، خطای مطلق کمیت اندازه گیری گفته می شود
تعریف خطای نسبی: اگر خطا بصورت کسری باشد، به این کسر، خطای نسبی مقدار کمیت اندازه گیری شده گفته می شود
4-5- ترکیب خطاها :
ممکن است در آزمایشی نیاز به یافت چند کمیت، که باید آنها را بعداُ در معادله ای وارد کنیم، داشته باشیم برای مثال ممکن است جرم و حجم جسمی را اندازه بگیریم و سپس نیاز به محاسبه چگالی داشته باشم، که با رابطه زیر تعریف می شود: سوال اینجاست که چه ترکیبی از خطاهای مقادیر m وV ] اندازه خطای را بدست می دهد. بدین منظور سه روش زیر ارائه داده می شود:
الف) روش اول: این روش را با دومثال زیر توضیح می دهیم:
مثال1: قطر سیمی با مقطع دایره ای برابر است با: مطلوب است اندازه سطح سیم و مقدار خطای آن؟
جواب:               
                                   
مثال2: در یک آزمایش الکتریکی، جریان جاری شده در یک مقاومت برابر با و ولتاژ دو سر مقاومت اندازه گیری شد.اندازه مقاومت و مقدار خطای مقاومت را بدست آورید؟

تعداد مشاهده: 307 مشاهده

فرمت فایل دانلودی:.DOC

فرمت فایل اصلی: doc

تعداد صفحات: 35

حجم فایل:745 کیلوبایت

 قیمت: 7,000 تومان
پس از پرداخت، لینک دانلود فایل برای شما نشان داده می شود.   پرداخت و دریافت فایل
  • محتوای فایل دانلودی: